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Abstract. The so-called API economy has popularised the consumption
of APIs and their payment through pricing plans. This trend is very much
in line with and particularly beneficial for systems with a microservices
architecture that makes use of external APIs. In these cases, more and
more often, the design of the system is based on the premise that its func-
tionality is offered to its users within certain operating conditions, which
implies that its architecture is aware of both the plans of external APIs
and its capacity limits. We have coined these architectures as limitation-
aware microservices architectures (LAMA). Furthermore, in case of a
Software as a Service (SaaS) model implemented with a LAMA, the
operating conditions would be explicitly grounded in the specific plans
agreed with the SaaS customers. In such a context, to design a set of po-
tential pricing plans for the LAMA and predict the expected operating
conditions, it is necessary to determine the capacity limits that the ar-
chitecture will offer and the cost of using external API. This is a tedious,
time-consuming, and error-prone activity, so its automation would be of
great value to software architects.
In this paper, we coin the term LAMA, describe the problem of auto-
mated capacity analysis of LAMAs, present a first approach to solving
it by interpreting it as an optimisation problem implementable as a con-
straint satisfaction and optimisation problem and introduce three basic
analysis operations from which any number of other operations can be
modelled. Finally, a tooling support is also introduced.
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1 Introduction

The so-called API economy refers to an ecosystem of APIs used as business
elements, where software system developers subscribe to and consume external
APIs, while also providing their own APIs with their own pricing plans. WSO2
defines the API economy as the ability for APIs to create new value and revenue
streams for organisations through the use of APIs [22]. Similarly, Capgemini
defines it as the ecosystem of business opportunities enabled by the delivery of
functionality, data, and algorithms over APIs [4]. Thus, the API economy has
popularised the consumption of APIs and their payment through what are known
as pricing plans, which describe their functionality, their capacity limits (aka
limitations) and the price for using them.

The API economy is very much in line with and particularly beneficial for
systems with a microservices architecture (MSA) [6] that uses external APIs. In
an MSA, each microservice should have a well-defined API and make use of a
standardized paradigm to integrate with the rest of microservices in the archi-
tecture and the external supporting services; usually, the most used paradigm
used to define the interface and inter-operate is the RESTful paradigm.

More and more often, the design of the system is based on the premise that
its functionality is offered to its users within certain operating conditions, which
implies that its architecture is built and operated taking into consideration the
limitations derived from its capacity and usage of external APIs. Note that for
the remainder of this paper we will refer to the microservices of an architecture
as internal services, even though they usually offer an API themselves; the
term API will be reserved for external APIs.

Taking into consideration this common scenario in the industry, we aim to
coin those architectures as limitation-aware microservices architectures (LAMA).
In such a context, it is important to note that in the case of Software as a Service
(SaaS) implemented with a LAMA, limitations play an even bigger role as the
operating conditions would be explicitly grounded in the specific plans agreed
with the SaaS customers. As an example, Fig. 1 shows a LAMA composed by
three different services (S1, S2, S3) that make use of two external APIs (E1, E2)
with different pricing plans. The LAMA customers have a pricing plan where
they have to choose between the Starter plan and Advanced plan with differ-
ent guaranteed operating conditions on the Requests Per Second (RPS) and a
corresponding monthly price.

In order to design the LAMA pricing plans and predict the operating condi-
tions, it is necessary to determine the capacity limits that the architecture will
offer and the cost of using external APIs, analysing different scenarios; specif-
ically, as motivating examples, we can identify three common situations: i) in
order to articulate a strategic decision to define the LAMA pricing plan for a
estimated scenario, we can ask about the baseline operational cost for such sce-
nario (e.g. Q1 - What is the cheapest operational cost for my LAMA in order to
offer 2 RPS to 20 customers? ); ii) given a fixed relationship or a pre-existing
ongoing contract with an external API, we could ask about the expected maxi-
mal operating conditions (e.g. Q2 - Assuming we have a Basic plan and a Gold
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S1

S2

S3

E1

E2

3
2

2
2

1

Basic Premium

$5/month $8/month

15 req/s 25 req/s

1000 req/day 10000 req/day

Ovg: $0.01/req No ovg

Silver Gold

$4/month $10/month

10 req/s 20 req/s

Starter Advanced

$10/month $25/month

2 req/s 5 req/s

Fig. 1. A sample LAMA with 3 internal services and 2 external APIs, each of them
with 2 pricing plans. Plan Basic has an overage cost. The LAMA offers its functionality
through two pricing plans.

plan already contracted what is the maximal requests per minute (RPM) I can
guarantee to all my 20 customers? ); iii) in case we have a pre-existing budget
limit for a given scenario, we could ask about the optimal combination of plans
to be subscribed and the potential limitations I could guarantee to my customers
with this combination (e.g. Q3 - Assuming we have a monthly budget limit of
$120 in my LAMA, which is the maximum RPS to each of 20 customers? ).

Beyond SaaS, it is important to note that those motivating examples can also
be adapted for any LAMA, even if they represent ad-hoc systems inside a single
organization and the number of customers is not relevant for the calculations,
for example: Q4 - What is the cheapest operational cost to guarantee a global
operating condition of 50 RPS?, Q5 - Assuming we have a Basic plan and a Gold
plan already contracted what is the maximal RPS I can guarantee as operating
condition? or, Q6 - Assuming we have a monthly budget limit of $120 in my
LAMA, which is the maximum RPS I can guarantee as operating condition?. In
fact, guiding the strategic decision of contracting external APIs and anticipating
the different options of operating conditions of the system depending on the cost
are critical aspects that could help software architects and DevOps of any LAMA.

These analysis questions deal with computer-aided extraction of useful in-
formation from a LAMA, which helps DevOps teams make certain decisions
and detect potential issues. Trying to answer these questions even in a simple
scenario leads to the conclusion that it is a tedious, time-consuming and error-
prone activity. In addition, as the LAMA has some complexity, performing these
analyses manually will be neither reliable nor cost-effective, and its automation
would be of great value to software architects. We have coined this problem
as the problem of automated capacity analysis of LAMAs. This capac-
ity analysis comprises the automation of different analysis operations that arise
from the number of requests, the cost and the time, which are the three
essential cornerstones of this problem. This problem is novel and has not been
fully explored in the literature. Existing work has always omitted at least one
of the three essential dimensions of a LAMA. We think that this is because no
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existing proposal studies the relationship between them. The QoS-aware service
composition problem is related to this topic, but does not fully address all the
features of LAMAs, as described in Section 3.

In this paper, we coin the term LAMA, describe the problem of automated
capacity analysis of LAMAs, and present an approach to solving it by inter-
preting it as an optimisation problem implementable as a constraint satisfaction
and optimisation problem (CSOP). We also present an extensible catalogue of
analysis operations and a public RESTful API that transforms a LAMA into an
initial implementation using the MiniZinc modelling language [17] and provides
solutions for basic analysis operations.

The remainder of this paper is structured as follows. In Section 2, we intro-
duce and define the different concepts that serve as background. In Section 3,
we explore related work and explain why their proposals are not useful in this
situation. In Section 4, we provide an initial definition of this problem through a
synthetic example. In Section 5 we present a preliminary approach and a possible
model of the problem using a CSOP. In Section 6 we present a public REST-
ful API that provides solutions for three basic analysis operations. Finally, in
Section 7 we summarise the conclusions of this paper and describe future work.

2 Background

2.1 Pricing Plans

API providers usually sell the functionality through multiple pricing plans, or
simply pricings [12]. In the widely used case of RESTful APIs the functionality
is defined as a set of endpoints (expressed as URLs) to resources that can be
operated (with the HTTP directives). In such a context, a given API could have
a number of endpoints and their specific pricing plans would specify the expected
operating conditions for each endpoint. For the sake of clarity, from now on, in
this paper we will assume an important simplification: each API only has a single
endpoint and a single operational directive.

In the scenario depicted in Fig. 1, E1 has two plans: Basic, with a price of
$5/month, a limitation of 15 RPS and another limitation of 1,000 requests per
day (RPD); and Premium, for $8/month, 25 RPS and 10,000 RPD; also, E2 has
two plans: Silver, with a price of $4/month and a limitation of 10 RPS; and
Gold, for $10/month and 20 RPS.

Pricing plans are usually paid through subscriptions, which tend to be billed
monthly or yearly. The more expensive plans have less restrictive limitations.
Some plans may also include an overage cost, that is, they allow clients to exceed
their limitations for an additional fee (e.g. $0.01 per request beyond the imposed
limitation in the example of Fig. 1).

When clients subscribe to a pricing plan, they usually obtain a personal API
key to identify their own requests and help providers apply the appropriate limi-
tations. It is possible for a single client to obtain multiple keys for the same plan
to overcome its limitations. Nonetheless, providers commonly limit the number
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of requests that can be sent from the same IP address to prevent a client from
obtaining too many keys, especially for free plans.

2.2 Topology of a LAMA

A LAMA is an MSA with at least one external API that is regulated by a pricing
plan, which includes, among other things, capacity limits and usage price.

As shown in Fig. 1, the topology of a LAMA can be represented as a DAG (di-
rected acyclic diagram), where each dark node corresponds to an internal service
in the LAMA and a light node corresponds to an external API. Each directed
edge between nodes represents a consumption from one node to another: e.g.
microservice S1 consumes microservices S2 and S3, microservice S2 consumes
external API E1, and microservice S3 consumes external APIs E1 and E2. Each
edge is labeled with the number of requests that are derived from the invoca-
tion of the consumer service: e.g. each time the microservice S1 is invoked, the
microservice S2 is consumed 3 times and microservice S3 is consumed 2 times.

It is worth noting that, for simplicity, we are using a maximal consumption
modelling of the LAMA, assuming that every request is always necessary, which
is not always true. Sometimes, sending certain requests depends on some condi-
tions that must be met, and this fact could be considered through statistic and
probabilistic analysis. Furthermore, we assume that requests do not consume
any time and are immediate.

2.3 Capacity of an MSA

In general, capacity of an MSA refers to the maximum workload that it can
handle, although there is no widely accepted definition for the term.

In our context, we consider the capacity of an entire MSA as the capacity
of a given entrypoint. An entrypoint is the service of the MSA that is invoked
first when a customer uses it, and then sends the appropriate requests to other
services, which, in turn, may send further requests to more services.

While there is no standard metric for the capacity, existing work in the
literature commonly uses the number of requests per unit of time as the metric
of choice. User interactions with a LAMA through a user interface translate into
requests that are sent to internal service endpoints (the entrypoints). Similarly,
if the LAMA offers a public API, interactions with it are done through requests
to some entrypoints.

3 Related Work

We are not aware of any existing proposal which analyses the capacity of an
MSA with external APIs regulated by pricing plans. The most similar proposal,
which has also been a major inspiration for us, is ELeCTRA by Gamez–Diaz
et al. [10]. Based on the limitations of an external API (specified in its pricing)
and the topology of an MSA with a single entrypoint, ELeCTRA computes
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the maximum values of the limitations that the entrypoint of the MSA will be
able to offer to its users. Assuming that the topology of the MSA does not
vary, these maximum values are determined solely by the values of the external
API limitations, i.e., they are induced by them. This analysis of the limitations
induced in an MSA is performed by ELeCTRA by interpreting the problem as
a CSOP and using MiniZinc [17] as a solver.

Unfortunately, ELeCTRA’s capabilities are insufficient to automatically anal-
yse the capacity of a LAMA. Its main limitation is to consider that a pricing
consists of a single constraint, or a single quota or a single limit. Thus, it is
not possible to model prices, overage cost, or specify several limits (quotas and
rates) in the same pricing. Consequently, none of the questions (Q1-Q6) raised
in Section 1 could be solved with ELeCTRA.

Capacity analysis of LAMAs is also closely related to the QoS-aware compo-
sition problem. It tackles the selection of the best providers for different tasks
in an architecture, based on QoS attributes offered by these providers that need
to be optimised depending on user needs. This problem can be solved using
search based techniques, using either Integer Linear Programming [23] or non-
deterministic approaches [20, 3]. Drawing inspiration from these proposals, we
could adapt their approaches to our problem, interpreting the LAMA as a com-
posite service where the QoS attributes of each provider correspond to the at-
tributes of a pricing plan. Nevertheless, this interpretation presents some limita-
tions that does not allow a complete capacity analysis of a LAMA, in particular:

– No proposal considers capacity limitations of external providers, instead fo-
cusing on other attributes such as availability or response time.

– Each attribute needs an aggregation function that is used to select the best
provider for each task. No aggregation function can model the exact seman-
tics of rates and quotas, especially considering that they are defined over
different time windows.

– No proposal defines analysis operations about capacity, time windows and
cost.

– In previous work, a task could only be associated with a single provider. In
our approach, there may be a need to use multiple API keys from the same
provider to perform the same task.

– In real-world systems, a single provider can define multiple pricing plans
for the same task. These plans differ in their cost, quotas, rates and other
attributes. This was not the case in the previous approach, where a provider
only had one plan for a task. Additionally, a LAMA might send multiple
requests to the same provider.

– There might be cases where there is no solution to the problem, e.g. the
LAMA is not able to serve enough requests to meet user requirements given
the subscribed pricing plans. In previous approaches, this aspect was not
taken into account.
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4 Capacity Analysis of LAMAs

The capacity of a LAMA refers to the maximum workload that it can handle
over a given period of time and at a maximum cost, without exceeding any of
the external limitations derived from subscribed pricing plans. This definition is
in line with the capacity and performance management practice in ITILv4 [15].

The capacity analysis of a LAMA should provide answers to the software
architects and DevOps to make decisions over the subscribed external APIs
and the potential operating conditions for the LAMA users. In particular, this
analysis should take into account three dimensions that are intertwined:

– Metrics. This dimension addresses the metrics (bounded to a scale) that have
an impact on the capacity or are constrained by external APIs. In this paper
we focus on a single metric, number of requests, that is the most widely used
metric in the industry [11] and is constrained and limited in most commercial
API pricing plans. It is important to note that the metric should always be
bounded to a particular scale. In the case of number of requests, we could
have different time scales such as Requests Per Second (RPS) or Requests
Per Hour (RPH).

– Temporality. This dimension represents the temporal boundaries for the ca-
pacity to be analyzed. In this context, the same LAMA could have different
capacities depending on the time period when it is calculated. These bound-
aries are typically linked with the desired operating conditions or, in case
of a SaaS, the defined pricing plans. As an example, in Fig. 1, since both
LAMAs pricing plans and external APIs plans are stated in terms of months,
the appropriate temporal boundaries for the capacity analysis should only
address a monthly perspective. However, in a more realistic setting there
could be scenarios where different external APIs have different plan periods
and consequently, the capacity analysis should combine multiple temporal
perspectives involved.

– Cost. This dimension takes into account the derived costs from the infras-
tructure operation and the cost derived from the contracted plans with the
different external APIs. In the example of Fig. 1, multiple options are pos-
sible, depending on the number of plans contracted; we assume that it is
possible to contract multiple times a particular plan as this is the norm in
the real API market.

For example, given the LAMA in Fig. 1, the capacity can be analysed by
manual calculations. In 1 second, using the cheapest plans and no overage cost,
the capacity of the LAMA is 1 RPS, because 1 request to S1 results in 8 requests
to E1, and one more request to S1 would result in 16 requests to E1, thus
exceeding the limitation of the Basic plan. The cost is a fixed value, $9 in this
case. In 2 seconds, the maximum number of requests allowed to E1 using the
Basic plan is 30; therefore, the capacity is 3 RPS, resulting in 24 requests to E1
and 12 to E2. The cost, however, remains the same.

When dealing with real-world architectures, the number of internal services
and external APIs is considerably high, and thus there is a great number of
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plans and possible combinations. Additionally, when defining the pricing plans
to be offered to the LAMA customers, it is fundamental to know the limitations
derived from the usage by the external APIs together with its associated cost.
In fact, these costs will be part of the operational costs of the LAMA, and
are essential when analysing the OpEx (Operational Expenditures) [1] for the
desired operating conditions in general, and to have profitable pricing plans in
the case of a SaaS LAMA.

5 Automated Capacity Analysis

Automated LAMA capacity analysis deals with extracting information from the
model of a LAMA using automated mechanisms. Analysing LAMA models is an
error-prone and tedious task, and it is infeasible to do it manually with large-
scale and complex LAMA models. In this paper we propose a similar approach to
that followed in other fields, i.e., to support the analysis process from a catalogue
of analysis operations (analysis of feature models [2, 5], service level agreements
[16, 19, 18] and Business Process [21]).

In this sense, all the analysis operations we have faced so far can be in-
terpreted in terms of optimal search problems. Therefore, they can be solved
through Search Based Software Engineering (SBSE) techniques, similarly to
other cloud engineering problems [13]. We tackle this problem as a Constraint
Satisfaction and Optimisation Problem (CSOP), where, grosso modo, the search
space corresponds to the set of tuples (Requests, T ime,Cost) that conform valid
operating conditions of the LAMA. The objective function is defined on the vari-
able that needs to be optimised in each case: requests, time or cost.

5.1 Formal Description of LAMAs

The primary objective of formalising a LAMA is to establish a sound basis
for the automated support. Following the formalisation principles defined by
Hofstede et al. [14], we follow a transformational style by translating the LAMA
specification to a target domain suitable for the automated analysis (Primary
Goal Principle). Specifically, we propose translating the specification to a CSOP
that can be then analysed using state-of-the-art constraint programming tools.

A CSOP is defined as a 3-tuple (V,D,C) composed of a set of variables V ,
their domains D and a number of constraints C. A solution for a CSOP is an
assignment of values to the variables in V from their domains in D so that all
the constraints in C are satisfied.

Due to lack of space, we summarised the most relevant aspects of mapping a
LAMA into a CSOP in our supplementary material [9]. The following paragraphs
explain how the different elements and relationships of a LAMA are translated
into a CSOP, mentioning the different variables and parameters that are needed
to model the problem:

– Positive number of requests. All internal services and external APIs
must serve a positive number of requests. Therefore, all variables reqSi and
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reqEi
that denote the request served by internal services and external APIs

respectively must be greater than or equal to 0.
– Requests served by internal services. Each internal service in the LAMA

Si must serve all requests sent to it by every other service Sj , denoted
as reqSjSi

. Thus, for each internal service there is a constraint reqSi
=∑n

j=1 reqSjSi
· reqSj

.
– Requests served by external APIs. Each external API Ei must serve all

requests sent to it by the internal services Sj , denoted as reqSjEi
. External

APIs do not send requests between them. Thus, for each external API there
is a constraint reqEi =

∑n
j=1 reqSjEi · reqSj . Additionally, the total number

of served requests is the sum of the requests sent to each plan below its
limitations, limReqij , and the requests sent over the limitations, ovgReqij .
This differentiation in two variables helps us obtain the number of overage
requests more easily. Thus, for each plan Pij of external API Ei there is
a constraint reqEi

=
∑n

j=1 limReqij + ovgReqij . Furthermore, no requests
can be sent using a plan with no keys, so for each plan there is a constraint
limReqij > 0 → keysij > 0. Also, no overage requests can be sent if there
are no requests below limitations, so for each plan there is another constraint
ovgReqij > 0 → limReqij > 0.

– Quota of each pricing plan. The number of requests served by each
external API Ei must not exceed any quota qij , defined over a time unit
quij . Multiple keys keysij for each plan may be obtained. For each ex-
ternal API Ei and each of its respective plans Pij , there is a constraint
limReqij <= keysij · qij · ⌈time/quij⌉.

– Rate of each pricing plan. The number of requests served by each external
API Ei must not exceed any rate rij , defined over a time unit ruij . Note that
rates need to account for the time unit of the quota, as the rate is reset at the
beginning of each unit. Therefore, for each external API Ei and each of its
respective plans Pij , there is a constraint limReqij − quij · ⌊time/quij⌋ <=
keysij · rij · ⌈time mod quij/ruij⌉. If a plan has no no quota, the constraint
is simplified to limReqi <= keysij · rij · ⌈time/ruij⌉.

– OpEx of each external API. The cost of each external API Ei is the sum
of the subscriptions to each plan Pij plus overage costs. For each external
API Ei, there is a constraint OpExi =

∑n
j=1 keysij ·costij+ovgij ·ovgReqij .

– Total OpEx. The total cost of the LAMA is the sum of the cost of each
external API. There is a constraint OpEx =

∑n
i=1 OpExi.

5.2 Analysis Operations

We propose a catalogue of three analysis operations that leverage the formal
description of LAMAs to automatically extract helpful information. Analogous
analysis operations have been defined in the context of the automated analysis of
feature models [2], service level agreements [16, 19, 18] and in the area of MSAs
[10] (we may remark that it is not our intention to propose an exhaustive set
of analysis operations as that would exceed the scope of this paper). For the
description of the operations as CSOPs, we will refer to the input specification
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of a LAMA L and a variable v. Additionally, we will use the following auxiliary
operations:

– map(L). This operation translates a LAMA specification L to a CSP following
the mapping described in Section 5.1 and more detailed in [9].

– minimize(CSP, v). This standard CSOP-based operation returns a solution
for the input CSP (if any) with the minimum value of variable v.

– maximize(CSP, v). Same that prior operation but with the maximum value
of variable v.

In what follows, we present three basic analysis operations, and, for the first
operations identified in Section 1, we provide an explanation of how it is mapped
to a CSOP from the corresponding basic operation.

Maximum number of requests. This operation returns the maximum num-
ber of requests that a LAMA L is able to serve, over a specific time window t
and for a maximum total cost c. This operation can be translated to a CSOP as
follows:

maxRequests(L, t, c) ⇐⇒ maximize(map(L) ∧ time = t ∧OpEx <= c, reqL)

With this operation we can answer question Q2 (Assuming we have a Ba-
sic plan and a Gold plan already contracted what is the maximal RPM I can
guarantee to all my 20 customers? ) in Section 1 resulting in 5.6 RPS to each
customer:

Q2 ⇐⇒ maxRequests(L, 60s, 15)/20 = 5.6 req

Similarly, question Q3 (Assuming we have a monthly budget limit of $120
in my LAMA, which is the maximum RPS to each of 20 customers? ) is trans-
lated into maxRequests(L, 1s, 120)/20, resulting in 1.35 (that is, 1) RPS to each
customer:

Q3 ⇐⇒ maxRequests(L, 1s, 120)/20 =1.35 req

Minimum cost. This operation returns the minimum cost of the LAMA L, so
that it can serve a minimum of RL requests over a time window t. From the
result of this operation we can obtain the optimum (cheapest) plan combination
(including the number of keys to be subscribed for each plan and possible overage
requests). The translation of this operation to a CSOP is as follows:

minCost(L,RL, t) ⇐⇒ minimize(map(L) ∧reqL = RL ∧ time = t,OpEx)

The question Q1 (What is the cheapest operational cost for my LAMA in
order to offer 2 RPS to 20 customers? ) is translated into minCost(L, 2 · 20, 1s),
resulting in a total cost of $174:

Q1 ⇐⇒ minCost(L, 2 · 20, 1s) =$174
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Minimum time. This operation returns the minimum time that a LAMA L
needs to serve at least RL requests, given a maximum total cost c. This operation
can be translated to a CSOP as follows:

minTime(L,RL, c) ⇐⇒ minimize(map(L) ∧ reqL = RL ∧OpEx <= c, time)

6 Validation

In order to verify that our proposal can be exploited in a useful way, we have
developed a tooling support that partially supports it. Specifically, we have de-
veloped a RESTful API that provides our 3 basic capacity analysis operations,
and a deepnote notebook that shows the Python implementation of the 6 analysis
questions posed in Section 1. This tooling support can and should be understood
as a minimal but solid proof of concept.

Smart LAMA [8], 1 is a public RESTful API that supports, among others,
various endpoints which transform a LAMA into a CSOP using the MiniZinc
modelling language. In particular, for the scope of this paper, we will focus on
the three main endpoints that provide solutions to the three analysis operations
described in the previous section.

All endpoints start with the base URL /api/v2/operations. They support
the POST method and require the formal description of the LAMA to be in-
cluded in the request body. The response includes the result of the operation
(a number) and the MiniZinc output (a string containing the final values of all
variables used to solve the CSOP).

– /maxRequests. This operation returns the maximum number of requests
that the LAMA is able to serve per unit of time without exceeding any ex-
ternal limitation. It supports some query parameters: OpEx is used to specify
a maximum total budget that can be spent to subscribe to the different pric-
ing plans; time can be used to specify the unit of time in which the operation
is calculated (indicated as the number of seconds, e.g. a minute is represented
as 60); and K-<API>-<Plan> is used to indicate a specific number of sub-
scriptions to a plan (e.g. K-E1-Basic=1 means that there is 1 subscription
to plan Basic of API E1). Note that there will be no restriction to the total
cost of the LAMA if no OpEx or specific subscriptions are indicated.

– /minCost. This operation returns the minimum cost to serve a certain num-
ber of requests, which is specified using the reqL query parameter, over a
certain time window, specified through the time query parameter. Both pa-
rameters are required. Obtaining the minimum cost implies obtaining the
optimum combination of subscriptions to the pricing plans, which is also
included within the MiniZinc output and may be extracted if needed.

– /minTime. This operation returns the minimum time (in number of seconds)
in which the LAMA can serve a certain number of requests, which is specified
using the reqL query parameter. This endpoint also supports the OpEx and
K-<API>-<Plan> parameters, which work exactly as described above.

1 Available at https://smart-lama-api-beta.herokuapp.com/api/v2.
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The formal description of a LAMA used in the notebook is a JSON-based
language which we named LAMA-DL. Due to lack of space, we will not explain
how to transform a LAMA into LAMA-DL. Nonetheless, we believe that the
example included in the notebook using the LAMA in Fig. 1 is self-explanatory
and contains all supported elements.

Note that, by default, the API is set up to assume that no overage requests
should be used. To enable the use of overage requests, all operations support the
useOvg query parameter, which should be explicitly set to true. Only pricing
plans with overage costs may have overage requests.

A known issue of the transformation into a MiniZinc model is that it generates
a considerable amount of internal variables that, in some situations, may have
very high values and cause out of bounds errors. To minimise these errors, we
decided to limit the maximum number of subscriptions to each plan to 10. This
workaround has proven to be useful based on our own experience. Furthermore,
it is very uncommon to obtain that many subscriptions to a single plan, as API
providers usually have limitations on the number of subscriptions per client or
IP address.

To validate Smart LAMA, we developed an online Deepnote notebook [7].
It contains wrappers that take a formal description of a LAMA as input, send
the appropriate request to the API using the corresponding query parameters,
and return the solution provided by MiniZinc, including the final values of all
internal variables after solving the CSOP. The notebook includes a complete
example based on the LAMA in Fig. 1 and shows how to use the API to solve
each of the 6 different analysis questions introduced in Section 1. Note that the
notebook has Execute access, meaning that its cells can be executed but not
edited. However, it can be duplicated and then edited.

Some examples of API calls included in the notebook [7] are the following:

– Q1. What is the cheapest operational cost for my LAMA in order
to offer 2 RPS to 20 customers? In this operation, the total number of
requests that the LAMA should serve is 2 · 20 = 40. This operation can be
solved using the endpoint /api/v2/operations/minCost?reqL=40&time=1.

– Q5. Assuming we have a Basic plan and a Gold plan already con-
tracted what is the maximal RPS I can guarantee as operating
condition? Using the endpoint /api/v2/operations/maxRequests?K-E1-
Basic=1&K-E1-Premium=0&K-E2-Silver=0&K-E2-Gold=1&time=1 it is pos-
sible to obtain the solution to this operation. Note that we are assuming that
we do not want any additional subscriptions besides one Basic and one Gold.
Therefore, the number of subscriptions to Premium and Silver must be set
to 0. Otherwise, there would be no limitation to the number of subscriptions
to these two plans.

– Q6. Assuming we have a monthly budget limit of $120 in my
LAMA, which is the maximum RPS I can guarantee as operating
condition?. The endpoint /api/v2/operations/maxRequests?OpEx=120&
time=1 provides a solution to this operation.
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7 Conclusions and future work

In this paper, we presented the problem of automating the capacity analysis
of microservices architectures in situations where the MSA consumes external
APIs that define pricing plans. We introduced the concept of limitation-aware
microservices architecture (LAMA) and explored the different dimensions in-
volved in the capacity analysis of a LAMA. We listed 6 analysis questions, which
we determined to be derived from three basic analysis operations that allow the
definition of any number of other operations. We presented a public API that
transforms a LAMA into a proof-of-concept implementation of these operations
using MiniZinc, and evaluated it in a synthetic LAMA example. We are confi-
dent that our proposal will prove useful to DevOps teams who need to deal with
issues related to capacity analysis of LAMAs.

We are aware that our tooling support is partial and therefore incomplete,
but it shows the real possibility of answering questions in less time than if it
were done manually. In this sense, we are working on using notation to describe
both the topology and the pricing closer to some of the available technology.

Furthermore, as future work, we would like to improve and extend our pro-
posal in order to support more complex operations. We want to consider the
addition of limitations in internal services, which usually have restrictions from
their deployment infrastructures. Additionally, we need to support multiple en-
trypoints, as it is uncommon for LAMAs to only have a single operation.
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